87 research outputs found

    Post-coronagraphic tip-tilt sensing for vortex phase masks: the QACITS technique

    Get PDF
    Small inner working angle coronagraphs, like the vortex phase mask, are essential to exploit the full potential of ground-based telescopes in the context of exoplanet detection and characterization. However, the drawback of this attractive feature is a high sensitivity to pointing errors, which degrades the performance of the coronagraph. We propose a tip-tilt retrieval technique based on the analysis of the final coronagraphic image, hereafter called Quadrant Analysis of Coronagraphic Images for Tip-tilt Sensing (QACITS). Under the assumption of small phase aberrations, we show that the behaviour of the vortex phase mask can be simply described from the entrance pupil to the Lyot stop plane by Zernike polynomials. This convenient formalism is used to establish the theoretical basis of the QACITS technique. Simulations have been performed to demonstrate the validity and limits of the technique, including the case of a centrally obstructed pupil. The QACITS technique principle is further validated by experimental results in the case of an unobstructed circular aperture. The typical configuration of the Keck telescope (24% central obstruction) has been simulated with additional high order aberrations. In these conditions, our simulations show that the QACITS technique is still adapted to centrally obstructed pupils and performs tip-tilt retrieval with a precision of 5×1025 \times 10^{-2} {\lambda}/D when wavefront errors amount to {\lambda}/14 rms and 10210^{-2} {\lambda}/D for {\lambda}/70 rms errors (with {\lambda} the wavelength and D the pupil diameter). The implementation of the QACITS technique is based on the analysis of the scientific image and does not require any modification of the original setup. Current facilities equipped with a vortex phase mask can thus directly benefit from this technique to improve the contrast performance close to the axis.Comment: 12 pages, 15 figures, accepted for publication in A&

    Speckle nulling wavefront control for Palomar and Keck

    Get PDF
    We present a speckle nulling code currently being used for high contrast imaging at the Palomar and Keck telescopes. The code can operate in open and closed loop and is self-calibrating, requiring no system model and minimal hand-coded parameters. Written in a modular fashion, it is straightforward to port to different instruments. It has been used with systems operating in the optical through thermal infrared, and can deliver nearly an order of magnitude improvement in raw contrast. We will be releasing this code to the public in the near future

    The QACITS pointing sensor: from theory to on-sky operation on Keck/NIRC2

    Get PDF
    Small inner working angle coronagraphs are essential to benefit from the full potential of large and future extremely large ground-based telescopes, especially in the context of the detection and characterization of exoplanets. Among existing solutions, the vortex coronagraph stands as one of the most effective and promising solutions. However, for focal-plane coronagraph, a small inner working angle comes necessarily at the cost of a high sensitivity to pointing errors. This is the reason why a pointing control system is imperative to stabilize the star on the vortex center against pointing drifts due to mechanical flexures, that generally occur during observation due for instance to temperature and/or gravity variations. We have therefore developed a technique called QACITS1 (Quadrant Analysis of Coronagraphic Images for Tip-tilt Sensing), which is based on the analysis of the coronagraphic image shape to infer the amount of pointing error. It has been shown that the flux gradient in the image is directly related to the amount of tip-tilt affecting the beam. The main advantage of this technique is that it does not require any additional setup and can thus be easily implemented on all current facilities equipped with a vortex phase mask. In this paper, we focus on the implementation of the QACITS sensor at Keck/NIRC2, where an L-band AGPM has been recently commissioned (June and October 2015), successfully validating the QACITS estimator in the case of a centrally obstructed pupil. The algorithm has been designed to be easily handled by any user observing in vortex mode, which is available for science in shared risk mode since 2016B

    Design study and first performance simulation of the ELT/MICADO focal plane coronagraphs

    Full text link
    In this paper, we present the design and the expected performance of the classical Lyot coronagraph for the high contrast imaging modes of the wide-field imager MICADO. MICADO is a near-IR camera for the Extremely Large Telescope (ELT, previously E-ELT), with wide-field, spectroscopic and coronagraphic capabilities. MICADO is one of the first-light instruments selected by the ESO. Optimized to work with a multi-conjugate adaptive optics corrections provided by the MOARY module, it will also come with a SCAO correction with a high-level, on-axis correction, making use of the M4 adaptive mirror of the telescope. After presenting the context of the high contrast imaging modes in MICADO, we describe the selection process for the focal plane masks and Lyot stop. We will also show results obtained in realistic conditions, taking into account AO residuals, atmospheric refraction, noise sources and simulating observations in angular differential imaging (ADI) mode. Based on SPHERE on-sky results, we will discuss the achievable gain in contrast and angular separation provided by MICADO over the current instruments on 10-m class telescopes, in particular for imaging young giant planets at very short separations around nearby stars as well as planets on wider orbits around more distant stars in young stellar associations.Comment: 10 pages, 5 figures, AO4ELT 5 conference proceedin

    SCExAO as a precursor to an ELT exoplanet direct imaging instrument

    Full text link
    The Subaru Coronagraphic Extreme AO (SCExAO) instrument consists of a high performance Phase Induced Amplitude Apodisation (PIAA) coronagraph combined with an extreme Adaptive Optics (AO) system operating in the near-infrared (H band). The extreme AO system driven by the 2000 element deformable mirror will allow for Strehl ratios >90% to be achieved in the H-band when it goes closed loop. This makes the SCExAO instrument a powerful platform for high contrast imaging down to angular separations of the order of 1lambda/D and an ideal testbed for exploring coronagraphic techniques for ELTs. In this paper we report on the recent progress in regards to the development of the instrument, which includes the addition of a visible bench that makes use of the light at shorter wavelengths not currently utilized by SCExAO and closing the loop on the tip/tilt wavefront sensor. We will also discuss several exciting guest instruments which will expand the capabilities of SCExAO over the next few years; namely CHARIS which is a integral field spectrograph as well as VAMPIRES, a visible aperture masking experiment based on polarimetric analysis of circumstellar disks. In addition we will elucidate the unique role extreme AO systems will play in enabling high precision radial velocity spectroscopy for the detection of small companions.Comment: 7 pages, 2 figures Proceedings of AO4ELTs3 conference, paper 13396, Florence, Italy, May 201

    The VORTEX project: first results and perspectives

    Get PDF
    (abridged) Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations. They feature a very small inner working angle, a clear 360 degree discovery space, have demonstrated very high contrast capabilities, are easy to implement on high-contrast imaging instruments, and have already been extensively tested on the sky. Since 2005, we have been designing, developing and testing an implementation of the charge-2 vector vortex phase mask based on concentric subwavelength gratings, referred to as the Annular Groove Phase Mask (AGPM). Science-grade mid-infrared AGPMs were produced in 2012 for the first time, using plasma etching on synthetic diamond substrates. They have been validated on a coronagraphic test bench, showing broadband peak rejection up to 500:1 in the L band, which translates into a raw contrast of about 6×1056\times 10^{-5} at 2λ/D2 \lambda/D. Three of them have now been installed on world-leading diffraction-limited infrared cameras (VLT/NACO, VLT/VISIR and LBT/LMIRCam). During the science verification observations with our L-band AGPM on NACO, we observed the beta Pictoris system and obtained unprecedented sensitivity limits to planetary companions down to the diffraction limit (0.10.1''). More recently, we obtained new images of the HR 8799 system at L band during the AGPM first light on LMIRCam. After reviewing these first results obtained with mid-infrared AGPMs, we will discuss the short- and mid-term goals of the on-going VORTEX project, which aims to improve the performance of our vortex phase masks for future applications on second-generation high-contrast imagers and on future extremely large telescopes (ELTs).Comment: To appear in SPIE proceedings vol. 914

    Three years of harvest with the vector vortex coronagraph in the thermal infrared

    Full text link
    For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 {\mu}m). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.Comment: To appear in SPIE proceedings vol. 990
    corecore